Threshold properties of matrix-valued Schrödinger operators, II. Resonances

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Resonances for Matrix Schrödinger Operators

We study the resonances of matrix Schrödinger operators, motivated by the BornOppenheimer approximation. We give a simple criterion for the potential to generate resonances. This criterion also gives the location of the resonances generated.

متن کامل

Quasi exactly solvable matrix Schrödinger operators

Two families of quasi exactly solvable 2 × 2 matrix Schrödinger operators are constructed. The first one is based on a polynomial matrix potential and depends on three parameters. The second is a one-parameter generalisation of the scalar Lamé equation. The relationship between these operators and QES Hamiltonians already considered in the literature is pointed out.

متن کامل

Schrödinger Operators with Complex-valued Potentials and No Resonances

In dimension d ≥ 3, we give examples of nontrivial, compactly supported, complex-valued potentials such that the associated Schrödinger operators have no resonances. If d = 2, we show that there are potentials with no resonances away from the origin. These Schrödinger operators are isophasal and have the same scattering phase as the Laplacian on R. In odd dimensions d ≥ 3 we study the fundament...

متن کامل

Extrapolation of vector-valued rearrangement operators II

We determine the extrapolation law of rearrangement operators acting on the Haar system in vector valued H spaces: If 0 < q ≤ p < 2, then, ‖Tτ,q ⊗ IdX‖ q 2−q q ≤ A(p, q)‖Tτ,p ⊗ IdX‖ p 2−p p . For a fixed Banach space X, the extrapolation range 0 < q ≤ p < 2 is optimal. If, however, there exists 1 < p0 < ∞, so that ‖Tτ,p0 ⊗ IdE‖L0 E < ∞, for each UMD space E, then for any 1 < p < ∞, ‖Tτ,p ⊗ IdE‖...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2006

ISSN: 0022-0396

DOI: 10.1016/j.jde.2005.10.021